矩阵的行秩和列秩一定相等吗

千千百科 16 0

矩阵的行秩和列秩,二者一定是相等的。行秩和列秩通过进行计算之后得到的都是矩阵的秩,这是秩的基本性质和定理。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。

矩阵的行秩列秩相等对吗

矩阵的行秩与列秩相等,是线性代数基本定理的重要组成部分. 其基本证明思路是,矩阵可以看作线性映射的变换矩阵,列秩为像空间的维度,行秩为非零原像空间的维度,因此列秩与行秩相等,即像空间的维度与非零原像空间的维度相等(这里的非零原像空间是指约去了零空间后的商空间:原像空间)。这从矩阵的奇异值分解就可以看出来。

矩阵的行秩和列秩怎么求

三秩相等,也就是矩阵的秩等于行秩等于列秩,按照一般的求矩阵的秩就ok了

矩阵的秩计算公式:A=(aij)m×n。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

抱歉,评论功能暂时关闭!