向量 AB(AB上面有→)的长度叫做向量的模,记作|AB|(AB上有→)或|a|(a上有→)。向量的模的运算没有专门的法则,一般都是通过余弦定理计算两个向量的和、差的模。多个向量的合成用正交分解法,如果要求模一般需要先算出合成后的向量。
向量的模计算公式
空间向量(x,y,z),其中x,y,z分别是三轴上的坐标,模长是:向量A加B的模怎么算
向量a+向量b的模=|向量a+向量b|=根号下(向量a+向量b)²
=根号下(|a|²+|b|²+2|a||b|cosα)
其中:cosα是向量a和向量b的夹角。
向量的大小,也就是向量的长度(或称模)。
注:
1.向量的模是非负实数,向量的模是可以比较大小的。
2.因为方向不能比较大小,所以向量也就不能比较大小。对于向量来说“大于”和“小于”的概念是没有意义的。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!