a²=b²+c²,c²=a²-b²,c=√(a²-b²),e=c/a=√[(a²-b²)/a²]=√[1-(b/a)²] 。椭圆的离心率:离心率统一定义是动点到焦点的距离和动点到准线的距离之比。
椭圆离心率计算方法
椭圆扁平程度的一种量度,离心率定义为椭圆两焦点间的距离和长轴长度的比值,用e表示,即e=c/a (c,半焦距;a,长半轴)椭圆的离心率可以形象地理解为,在椭圆的长轴不变的前提下,两个焦点离开中心的程度。
离心率=(ra-rp)/(ra+rp),ra指远点距离,rp指近点距离。
圆的离心率=0
椭圆的离心率:e=c/a(0,1)(c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )
抛物线的离心率:e=1
双曲线的离心率:e=c/a(1,+∞) (c,半焦距;a,半长轴(椭圆)/半实轴(双曲线) )
在圆锥曲线统一定义中,圆锥曲线(二次非圆曲线)的统一极坐标方程为
ρ=ep/(1-e×cosθ), 其中e表示离心率,p为焦点到准线的距离。
椭圆上任意一点到两焦点的距离等于a±ex。
椭圆离心率范围
e=0,圆0<e<1,椭圆
e=1,抛物线
e>1,双曲线
离心率统一定义是在圆锥曲线中,动点到焦点的距离和动点到准线的距离之比。既然是距离,就不会出现负数了。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!