点法向式就是由直线上一点的坐标和与这条直线的法向量确定的——((x0,y0)为直线上一点,{u,v}为直线的法向向量)。高中数学中直线方程之一。u(x-x0)+v(y-y0)=0,且u,v不全为零的方程,称为点法向式方程。该方程可以表示所有直线。
已知一般式方程求点法向式方程
设平面方程为ax+by+cz+d=0,则其法向量为(a/√(a²+b²+c²),b/√(a²+b²+c²),c/√(a²+b²+c²))。二次函数配方法就可以了。比如y=x^2+4*x+5=(x+2)^2+1,过点(-2,1),法线为x=-2
由直线一般方程求点向式方程
直线一般方程可理解为两个平面方程的交线,可以分别写出两平面的法向量n1、n2,根据法向量的定义,n1和n2垂直于本平面的所有直线。待求直线为两平面交线,所以必然垂直于n1和n2;根据向量叉乘的几何意义,直线的方向向量L必然平行于n1×n2,可直接令L=n1×n2。
再从方程中求出直线上的任意一点(例如可令z=0,直线方程变成二元一次方程组,解出x和y,就得到一个点坐标)
综上就可列出直线的点向式方程。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!