柯西不等式是由大数学家柯西在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为柯西-布尼亚科夫斯基-施瓦茨不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式的形式
柯西的简要介绍
柯西是法国数学家、力学家。27岁成为巴黎综合工科学校教授,并当选为法国科学院 院士. 他的一生获得了多项重要的成果。柯西不等式便是他的一个非常重要的成果。除此之外他在数学的很多领域都进行了深刻的研究,其中包括数论、代数、数学分析和微分方程等,为数学的发展做出的突出的贡献。柯西对高等数学的贡献包括:无穷级数的敛散性,实变和复变函数论,微分方程,行列式,概率和数理方程等方面的研究。目前我们所学的极限和连续性的定义,导数的定义,以及微分、定积分用无穷多个无穷小的和的极限定义,实质上都是柯西给出的。数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!