线性规划是高中数学必修部分的知识,为帮助大家更好的掌握这部分的知识,小编整理了线性规划判断上下的口诀,一起来看吧!
线性规划判断上下口诀
线性规划中设直线方程为一般式是ax+by+c=0,且a>0,画出方程的直线,线性规划判断上下口诀是直线的左上方、左方、左下方是负,直线的右上方、右方、右下方是正。当直线方程式是bx+c=0时(b大于0),图像是水平直线,口诀是“上正下负”。线性规划问题的可能结果
存在最优解若当前基本可行解的全部非基变量的检验数≥0,则基本可行解为线性规划的最优解;最优解存在的时候,又可分为以下两种类型:
(1)有唯一最优解
当前基本可行解的全部非基变量的检验数>0,其中它的b值能够≥0;
(2)有无穷多最优解;
假设当前基本可行解是非退化的(即基本可行解的值都严格>0),若它的基本可行解的全部非基变量的检验数≥0,并存在至少一个等于0,则线性规划问题有无穷多最优解;
不存在最优解(1)无界解(也称无最优解)
若当前基本可行基的某个非基变量的检验数<0,而相应的系数向量元素都小于0,则线性规划问题具有无界解。
(2)无解或无可行解
b列向量中有元素为0。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!