等式的基本性质1是等式两边同时加或减同一个数等式仍相等;等式的基本性质2是等式两边同时乘以一个相同的式子等式仍成立。等式分为含有未知数的等式和不含未知数的等式。
含有等号的式子叫做等式。等式可分为矛盾等式和条件等式。等式两边同时加上(或减去)同一个整式,或者等式两边同时乘或除以同一个不为0的整式,或是等式左右两边同时乘方,等式仍然成立。
等式具有传递性。等式的性质是解方程的基础,很多解方程的方法都要运用到等式的性质。如移项,运用了等式的性质1;去分母,运用了等式的性质2。运用等式的性质,涉及除法时,要注意转换后,除数不能为0,否则无意义。
恒等式是无论其变量如何取值,等式永远成立的算式。恒等式成立的范围是左右函数定义域的公共部分,两个独立的函数却各自有定义域,与x在非负实数集内是恒等的,而在实数集内是不恒等的。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!