从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。直线方程主要分为点斜式、斜截式、两点式、截距式、一般式五种。
直线方程的五种形式
1:点斜式:已知直线过点(x0,y0),斜率为k,则直线方程为y-y0=k(x-x0)。2:斜截式:已知直线在y轴上的截距为b,斜率为k,则直线方程为y=kx+b
3:两点式:已知一条直线经过P1(x1,y1),P2(x2,y2)两点,则直线方程为x-x1/x2-x1=y-y1/y2-y1,但不包括垂直于坐标轴的直线。
4:截距式:已知直线在x轴和y轴上的截距为a,b,则直线方程为x/a+y/b=1
5:一般式:任何直线均可写成Ax+By+C=0(A,B不同时为0)的形式。
五种形式的注意事项
一般式为ax+by+c=0,它的优点就是它可以表示平面上的任意一条直线,仅此而已。其它式都有特例直线不能表示。比如:1:斜截式y=kx+b,就不能表示垂直x轴的直线x=a.
2:点斜式y-y0=k(x-x0),也不能表示垂直x轴的直线x=a
3:两点式(y-y1)/(y2-y1)=(x-x1)/(x2-x1)。不能表示两点x1=x2或y1=y2时的直线(即垂直或水平直线)
4:截距式x/a+y/b=1不能表示截距为0时的直线,比如正比例直线。
5:一般式中要确定3个常数a,b,c(虽然其中只有两个是独立的),而其它式只需确定两个常数,所以其它式更简洁一些,实际应用中大多是根据所给的条件,主要选择其它式来做的,为了方便计算。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!