在概率论和统计学中,数学期望(或均值,亦简称期望)为试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。
正态分布的期望和方差
数学期望反映随机变量平均取值的大小。方差为各个数据与平均数之差的平方的和的平均数,即
其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s²就表示方差。
方差的相关知识点
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。
方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!