正态分布的期望和方差是什么 怎么计算

千千百科 12 0

在概率论和统计学中,数学期望(或均值,亦简称期望)为试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。

正态分布的期望和方差

数学期望反映随机变量平均取值的大小。

方差为各个数据与平均数之差的平方的和的平均数,即

其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s²就表示方差。

方差的相关知识点

当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。

样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。

方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。

抱歉,评论功能暂时关闭!