两个n阶正交矩阵的乘积是正交矩阵。如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。正交矩阵的最基本置换是换位,通过交换单位矩阵的两行得到。
正交矩阵毕竟是从内积自然引出的,所以对于复数的矩阵这导致了归一要求。正交矩阵不一定是实矩阵。实正交矩阵(即该正交矩阵中所有元都是实数)可以看做是一种特殊的酉矩阵,但也存在一种复正交矩阵,这种复正交矩阵不是酉矩阵。
在矩阵论中,实数正交矩阵是方块矩阵Q,它的转置矩阵是它的逆矩阵,如果正交矩阵的行列式为+1,则称之为特殊正交矩阵。
方阵A正交的充要条件是A的行(列)向量组是单位正交向量组;
方阵A正交的充要条件是A的n个行(列)向量是n维向量空间的一组标准正交基;
A是正交矩阵的充要条件是:A的行向量组两两正交且都是单位向量;
A的列向量组也是正交单位向量组。
正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!