极限不存在是指在x趋向于某一值时函数所趋向的值不是一个确定的值。这里还包括从左趋向和从右趋向,一般来讲当左趋向和右趋向不一致的情况下说函数在这个值没有极限。
极限不存在有哪种情况
极限不存在有三种情况:
1、极限为无穷,很好理解,明显与极限存在定义相违。
2、左右极限不相等,例如分段函数。
3、没有确定的函数值,例如lim从0到无穷。
极限不存在建立的概念
可以说数学分析中的几乎所有的概念都离不开极限。在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。如:
(1)函数在点连续的定义,是当自变量的增量趋于零时,函数值的增量趋于零的极限。
(2)函数在点导数的定义,是函数值的增量与自变量的增量之比,当时的极限。
(3)函数在点上的定积分的定义,是当分割的细度趋于零时,积分和式的极限。
(4)数项级数的敛散性是用部分和数列的极限来定义的。
(5)广义积分是定积分其中为,任意大于的实数当时的极限,等等。
文章来源:
千千百科
版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至23467321@qq.com举报,一经查实,本站将立刻删除;如已特别标注为本站原创文章的,转载时请以链接形式注明文章出处,谢谢!